Catalog Service: XPM Catalog of positions and proper motions
Description
We combined data from the Two-Micron All Sky Survey (2MASS) and USNO-A2.0 catalogues in order to derive the absolute proper motions of about 280 million stars distributed all over the sky excluding a small region near the Galactic Centre, in the magnitude range 12<B<19mag. The proper motions were derived from the 2MASS Point Sources and USNO-A2.0 catalogue positions with a mean epoch difference of about 45 years for the Northern hemisphere and about 17 years for the Southern one. The zero-point of the absolute proper motion frame (the 'absolute calibration') was specified with the use of about 1.45 million galaxies from 2MASS. Most of the systematic zonal errors inherent in the USNO-A2.0 catalogue were eliminated before the calculation of proper motions. The mean formal error of absolute calibration is less than 1mas/yr.
This section describes who is responsible for this resource
Publisher: CDSivo://CDS[Pub. ID]
Contact Information:
This section provides some status information: the resource version, availability, and relevant dates.
This resource was registered on: 2015 Nov 24 13:45:41ZThis resource description was last updated on: 2021 Oct 21 00:00:00Z
This section describes what the resource is, what it contains, and how it might be relevant.
Related Resources:
This section describes the data's coverage over the sky, frequency, and time.
Wavebands covered:
This section describes the rights and usage information for this data.
This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.
This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.
This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.
Cone search capability for table I/319/xpm (formatted catalog (on a total of 313,610,083 sources))
VERB=1
VERB=3
Developed with the support of the National Science Foundation under Cooperative Agreement AST0122449 with the Johns Hopkins University The NAVO project is a member of the International Virtual Observatory Alliance
This NAVO Application is hosted by the Space Telescope Science Institute