Description
This paper presents the results of a high resolution radio imaging survey of 83 of the 118 ultraluminous infrared galaxies (ULIRGs) in the IRAS 1Jy ULIRG sample (Kim & Sanders, 1998ApJS..119...41K, Veilleux et al., 2002, Cat. <J/ApJS/143/315>). We have observed these ULIRGs at 15-GHz with the Very Large Array (VLA). We find that ~75% of Seyferts (both type 1 and 2) and LINERs have radio nuclei which are compact at our 150mas resolution. The detection rate of HII nuclei is significantly lower (32%); the detections among these are preferentially HII+LINER/Seyfert composite nuclei. Among ULIRGs with multiple optical or near-IR nuclei our observations detected only one (or no) nucleus; in these the radio detection is typically towards the brightest near-IR nucleus. The compactness of the radio sources, the higher detection rates in AGN-type nuclei than HII nuclei, the preferential detection of nuclei with unresolved point sources in the near-IR, the low soft X-ray to nuclear radio luminosity ratio (arguing against thermal emission powering the radio nuclei), and the lack of correlation between radio power and H{alpha} luminosity, all support an origin of the detected radio nuclei in AGN related activity. This result is especially interesting for LINER ULIRGs for which signatures of AGNs have often been ambiguous in other wavebands. Such a high incidence of AGN would provide, for the first time, a large sample in which to study the interplay between AGN, starbursts, and galaxy mergers.
|