Description
We present an analysis of the classical T Tauri star RW Aur A, based on 77 echelle spectra obtained at Lick Observatory over a decade of observations. RW Aur, which has a higher than average mass accretion rate among T Tauri stars, exhibits permitted (Halpha, Hbeta, Ca II, He I, NaD) and forbidden ([OI]6300{AA}) emission lines with strong variability. The permitted lines display multiple periodicities over the years, often with variable accretion (redshifted) and outflow (blueshifted) absorption components, implying that both processes are active and changing in this system. The broad components of the different emission lines exhibit correlated behavior, indicating a common origin for all of them. We compute simple magnetospheric accretion and disk-wind Halpha, Hbeta and NaD line profiles for RW Aur. The observed Balmer emission lines do not have magnetospheric accretion line profiles. Our modeling indicates that the wind contribution to these line profiles is very important and must be taken into account. Our results indicate that the Halpha, Hbeta and NaD observed line profiles of RW Aur are better reproduced by collimated disk-winds starting from a small region near the disk inner radius.
|