ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Mid-IR and radio interferometry of S Ori

Short name: J/A+A/470/191
IVOA Identifier: ivo://CDS.VizieR/J/A+A/470/191
DOI (Digital Object Identifier): 10.26093/cds/vizier.34700191
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/470/191
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2007 Oct 28 08:38:09Z
Get XML

Description


We present the first multi-epoch study that includes concurrent mid-infrared and radio interferometry of an oxygen-rich Mira star. We obtained mid-infrared interferometry of S Ori with VLTI/MIDI at four epochs in December 2004, February/March 2005, November 2005, and December 2005. We concurrently observed v=1, J=1-0 (43.1GHz) and v=2, J=1-0 (42.8GHz) SiO maser emission toward S Ori with the VLBA in January, February, and November 2005. The MIDI data are analyzed using self-excited dynamic model atmospheres including molecular layers, complemented by a radiative transfer model of the circumstellar dust shell. The VLBA data are reduced to the spatial structure and kinematics of the maser spots. The modeling of our MIDI data results in phase-dependent continuum photospheric angular diameters of 9.0+/-0.3mas (phase 0.42), 7.9+/-0.1mas (0.55), 9.7+/-0.1mas (1.16), and 9.5+/-0.4mas (1.27). The dust shell can best be modeled with Al2O3 grains alone using phase-dependent inner boundary radii between 1.8 and 2.4 photospheric radii. The dust shell appears to be more compact with larger optical depth near visual minimum (tau_V_~2.5), and more extended with lower optical depth after visual maximum (tau_V_~1.5). The ratios of the 43.1GHz/42.8GHz SiO maser ring radii to the photospheric radii are 2.2+/-0.3/2.1+/-0.2 (phase 0.44), 2.4+/-0.3/2.3+/-0.4 (0.55), and 2.1+/-0.3/1.9+/-0.2 (1.15). The maser spots mark the region of the molecular atmospheric layers shortly outward of the steepest decrease of the mid-infrared model intensity profile. Their velocity structure indicates a radial gas expansion. S Ori shows significant phase-dependences of photospheric radii and dust shell parameters. Al2O3 dust grains and SiO maser spots form at relatively small radii of ~1.8-2.4 photospheric radii. Our results suggest increased mass-loss and dust formation close to the surface near minimum visual phase, when Al2O3 dust grains are co-located with the molecular gas and the SiO maser shells, and a more expanded dust shell after visual maximum. Silicon does not appear to be bound in dust, as our data shows no sign of silicate grains.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Wittkowski M.Boboltz D.A.Ohnaka K.Driebe T.Scholz M.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Jun 12 08:24:37Z
  • Created: 2007 Oct 28 08:38:09Z

This resource was registered on: 2007 Oct 28 08:38:09Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Interferometry
  • Astrophysical masers
  • Radio astronomy
  • Infrared astronomy
  • Spectroscopy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/470/191 Literature Reference: 2007A&A...470..191W

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Infrared
  • Radio

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/470/191
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us