Catalog Service: Chemical evolution of SMC planetary nebulae
Description
We investigate the chemical evolution of the Small Magellanic Cloud (SMC) based on abundance data of planetary nebulae (PNe). The main goal is to investigate the time evolution of the oxygen abundance in this galaxy by deriving an age-metallicity relation. Such a relation is of fundamental importance as an observational constraint for chemical evolution models of the SMC. We have used high quality PNe data to derive the properties of the progenitor stars, so that the stellar ages could be estimated. We collected a large number of measured spectral fluxes for each nebula and derived accurate physical parameters and nebular abundances. New spectral data for a sample of SMC PNe obtained between 1999 and 2002 are also presented. These data are used with data available in the literature to improve the accuracy of the fluxes for each spectral line.
This section describes who is responsible for this resource
Publisher: CDSivo://CDS[Pub. ID]
Contact Information:
This section provides some status information: the resource version, availability, and relevant dates.
This resource was registered on: 2007 Nov 15 08:24:12ZThis resource description was last updated on: 2021 Oct 21 00:00:00Z
This section describes what the resource is, what it contains, and how it might be relevant.
Related Resources:
This section describes the data's coverage over the sky, frequency, and time.
Wavebands covered:
This section describes the rights and usage information for this data.
This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.
This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.
This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.
Cone search capability for table J/A+A/472/101/table7 (Ionic abundances and uncertainties)
VERB=1
VERB=3
Developed with the support of the National Science Foundation under Cooperative Agreement AST0122449 with the Johns Hopkins University The NAVO project is a member of the International Virtual Observatory Alliance
This NAVO Application is hosted by the Space Telescope Science Institute