ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
R light-curve of TT Ari

Short name: J/A+A/496/765
IVOA Identifier: ivo://CDS.VizieR/J/A+A/496/765
DOI (Digital Object Identifier): 10.26093/cds/vizier.34960765
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/496/765
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2009 Apr 14 13:00:06Z
Get XML

Description


We study the variability of the nova-like cataclysmic variable TT Ari, on time-scales of between minutes and months. The observations in the filter R were obtained at the 40-cm telescope of the Chungbuk National University (Korea), 51 observational runs cover 226 hours. In our analysis, we applied several methods: periodogram, wavelet, and scalegram analysis. TT Ari remained in a "negative superhump" state after its return from the "positive superhump" state, which lasted for 8 years. The ephemeris for 12 of the best pronounced minima is T_min_=BJD 2453747.0700(47)+0.132322(53)E, where numbers in digits are errors in units of the last digit. The phases of minima may reach 0.2, which reflects the non-eclipse nature of these minima. The quasi-periodic oscillations (QPO) are present with a mean "period" of 21.6min and mean semi-amplitude of 36mmag.This value is consistent with the range 15-25min reported for previous "negative superhump" states and does not support the hypothesis of secular decrease in the QPO period. Either the period, or the semi-amplitude show significant night-to-night variations. According to the position at the two-parameter diagrams (i.e. diagrams of pairs of parameters: time, mean brightness of the system, brightness of the source of QPO, amplitude, and timescale of the QPOs), the interval of observations was divided into 5 parts, showing different characteristics: 1) the "pre-outburst" stage, 2) the "rise to outburst", 3) "top of the outbursts", 4) "post- outburst QPO" state, and 5) "slow brightening". The the QPO source was significantly brighter during the 10-day outburst, than during the preceding interval. However, after the outburst, the large brightness of the QPO source still existed for about 30 days, producing the stage "4". The diagram for m_QPO_({bar}{m}) exhibits two groups in the brightness range 10.6-10.8, which correspond to larger and smaller amplitudes of the QPO. For the group "5" only, statistically significant correlations were found, for which, with increasing mean brightness, the period, amplitude, and brightness of the of QPO source also increase. The mean brightness at the "negative superhump state" varies within 10.3-11.2, so the system is brighter than at the "positive superhump" (11.3), therefore the "negative superhump" phenomenon may be interpreted by a larger accretion rate. The system is an excellent laboratory for studying processes resulting in variations on timescales of between seconds and decades and needs further monitoring at various states of activity.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Kim Y.Andronov I.L.Cha S.M.Chinarova L.L.Yoon J.N.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Jun 22 14:28:26Z
  • Created: 2009 Apr 14 13:00:06Z

This resource was registered on: 2009 Apr 14 13:00:06Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Cataclysmic variable stars
  • CCD photometry
  • Photometry
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/496/765 Literature Reference: 2009A&A...496..765K

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
J/A+A/265/77 : VBLUW Observations of TT Ari (Hollander+ 1992) ivo://CDS.VizieR/J/A+A/265/77 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/496/765
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us