ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
NGC 7129 FIRS 2 interferometric 1-D spectrum

Short name: J/A+A/568/A65
IVOA Identifier: ivo://CDS.VizieR/J/A+A/568/A65
DOI (Digital Object Identifier): 10.26093/cds/vizier.35680065
Publisher: CDS[+][Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/568/A65
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2014 Aug 20 07:28:55Z
Get XML

Description


NGC 7129 FIRS 2 (hereafter FIRS 2) is an intermediate-mass (2 to 8M_{sun}_) protostar located at a distance of 1250pc. High spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218200MHz to 221800MHz carried out with the IRAM Plateau de Bure Interferometer. These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30m telescope. We used a Local Thermodynamic Equilibrium (LTE) single temperature code to model the whole dataset. The interferometric spectrum is crowded with a total of ~300 lines from which a few dozens remain unidentified yet. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues and deuterated compounds. Complex molecules like methyl formate (CH_3_OCHO), ethanol (CH_3_CH_2_OH),g lycolaldehyde (CH_2_OHCHO), acetone (CH_3_COCH_3_), dimethyl ether (CH_3_OCH_3_), ethyl cyanide (CH_3_CH_2_CN) and the aGg' conformer of ethylene glycol (aGg'-(CH_2_OH)_2_) are among the detected species. The detection of vibrationally excited lines of CH_3_CN, CH_3_OCHO, CH_3_OH, OCS, HC_3_N and CH_3_CHO proves the existence of gas and dust at high temperatures. In fact, the gas kinetic temperature estimated from the vibrational lines of CH_3_CN, ~405K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS 2 and the Orion hot core. We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D_2_CO and CH_2_DOH and a few molecules (CH_3_CH_2_CN, SO_2_, HNCO and CH_3_CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse phase in the case of Orion) and/or different crossing time of the gas in the hot core can explain this behavior.

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

[+] Rights and Usage Information

This section describes the rights and usage information for this data.

Available Service Interfaces

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us