ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Photodissociation with mechanical heating

Short name: J/A+A/574/A127
IVOA Identifier: ivo://CDS.VizieR/J/A+A/574/A127
DOI (Digital Object Identifier): 10.26093/cds/vizier.35740127
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/574/A127
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2015 Feb 05 08:56:59Z
Get XML

Description


CO observations in active galactic nuclei and starbursts reveal high kinetic temperatures. Those environments are thought to be very turbulent due to dynamic phenomena, such as outflows and high supernova rates. We investigate the effect of mechanical heating on atomic fine-structure and molecular lines and on their ratios. We try to use those ratios as a diagnostic to constrain the amount of mechanical heating in an object and also study its significance on estimating the H_2_ mass. Equilibrium photodissociation models (PDRs hereafter) were used to compute the thermal and chemical balance for the clouds. The equilibria were solved for numerically using the optimized version of the Leiden PDR-XDR code. Large velocity-gradient calculations were done as post-processing on the output of the PDR models using RADEX. High-J CO line ratios are very sensitive to mechanical heating ({GAMMA}mech hereafter). Emission becomes at least one order of magnitude brighter in clouds with n~10^5^cm^-3^ and a star formation rate of 1M_{sun}/yr (corresponding to {GAMMA}mech=2x10^-19^erg/cm^3^/s). The Emission of low-J CO lines is not as sensitive to {GAMMA}mech, but they do become brighter in response to {GAMMA}mech. Generally, for all of the lines we considered, {GAMMA}mech increases excitation temperatures and decreases the optical depth at the line centre. Hence line ratios are also effected, strongly in some cases. Ratios involving HCN are a good diagnostic for {GAMMA}mech , where the HCN(1-0)/CO(1-0) increases from 0.06 to 0.25, and the HCN(1-0)/HCO^+^ (1-0) increase from 0.15 to 0.5 for amounts of {GAMMA}mech that are equivalent to 5% of the surface heating rate. Both ratios increase to more than 1 for higher {GAMMA}mech , as opposed to being much less than unity in pure PDRs. The first major conclusion is that low-J to high-J intensity ratios will yield a good estimate of the mechanical heating rate (as opposed to only low-J ratios). The second one is that the mechanical heating rate should be taken into account when determining AV or, equivalently, NH, and consequently the cloud mass. Ignoring {GAMMA}mech will also lead to large errors in density and radiation field estimates.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Kazandjian M.V.Meijerink R.Pelupessy I.Israel F.P.Spaans M.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2015 Jul 11 19:08:01Z
  • Created: 2015 Feb 05 08:56:59Z

This resource was registered on: 2015 Feb 05 08:56:59Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Galaxies
  • Infrared sources
  • Interstellar medium
  • Astronomical models
  • Molecular clouds
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/574/A127 Literature Reference: 2015A&A...574A.127K

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Infrared

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/574/A127
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us