ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Star-forming regions deuteration

Short name: J/A+A/579/A80
IVOA Identifier: ivo://CDS.VizieR/J/A+A/579/A80
DOI (Digital Object Identifier): 10.26093/cds/vizier.35790080
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/579/A80
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2015 Nov 17 14:31:13Z
Get XML

Description


The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows distinguishing between subsequent stages of high-mass star formation regions based on the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO^+^, and N_2_D^+^ as well as their non-deuterated counterparts. The overall detection fraction of DCN, DNC, and DCO^+^ is high and exceeds 50% for most of the stages. N_2_D^+^ was only detected in a few infrared dark clouds and high-mass protostellar objects. This may be related to problems in the bandpass at the transition frequency and to low abundances in the more evolved, warmer stages. We find median D/H ratios of 0.02 for DCN, 0.005 for DNC, 0.0025 for DCO^+^, and 0.02 for N_2_D^+^. While the D/H ratios of DNC, DCO^+^, and N_2_D^+^ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N_2_D^+^ with the luminosity of the central source and the FWHM of the line, and no correlation with the H_2_ column density. In combination with a previously observed set of 14 other molecules (Paper I), we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H_2_ states. Good overall fits to the observed data were obtained with the model. This is one of the first times that observations and modeling were combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Gerner T.Shirley Y.L.Beuther H.Semenov D.Linz H.Albertsson T.Henning T.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Jan 11 12:09:09Z
  • Created: 2015 Nov 17 14:31:13Z

This resource was registered on: 2015 Nov 17 14:31:13Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Molecular clouds
  • Spectroscopy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/579/A80 Literature Reference: 2015A&A...579A..80G

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/A+A/563/A97 : IRAM 30m reduced spectra of 59 sources (Gerner+, 2014) ivo://CDS.VizieR/J/A+A/563/A97 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/579/A80
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/579/A80/tablea1 (Source list showing the position, the distance, and the evolutionary stage of all high-mass star-forming regions)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/579/A80/tablea1?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us