ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Reduced high-resolution HI and CO data cubes

Short name: J/A+A/592/A142
IVOA Identifier: ivo://CDS.VizieR/J/A+A/592/A142
DOI (Digital Object Identifier): 10.26093/cds/vizier.35920142
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/592/A142
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2016 Aug 18 19:20:18Z
Get XML

Description


Intermediate-velocity clouds (IVCs) are HI halo clouds that are likely related to a Galactic fountain process. In-falling IVCs are candidates for the re-accretion of matter onto the Milky Way. Aims. We study the evolution of IVCs at the disk-halo interface, focussing on the transition from atomic to molecular IVCs. We compare an atomic IVC to a molecular IVC and characterise their structural differences in order to investigate how molecular IVCs form high above the Galactic plane. With high-resolution HI observations of the Westerbork Synthesis Radio Telescope and ^12^CO(1-0) and ^13^CO(1-0) observations with the IRAM 30m telescope, we analyse the small-scale structures within the two clouds. By correlating HI and far-infrared (FIR) dust continuum emission from the Planck satellite, the distribution of molecular hydrogen (H_2_) is estimated. We conduct a detailed comparison of the HI, FIR, and CO data and study variations of the XCO conversion factor. The atomic IVC does not disclose detectable CO emission. The atomic small-scale structure, as revealed by the high-resolution HI data, shows low peak HI column densities and low HI fluxes as compared to the molecular IVC. The molecular IVC exhibits a rich molecular structure and most of the CO emission is observed at the eastern edge of the cloud. There is observational evidence that the molecular IVC is in a transient and, thus, non- equilibrium phase. The average XCO factor is close to the canonical value of the Milky Way disk. We propose that the two IVCs represent different states in a gradual transition from atomic to molecular clouds. The molecular IVC appears to be more condensed allowing the formation of H_2_ and CO in shielded regions all over the cloud. Ram pressure may accumulate gas and thus facilitate the formation of H_2_. We show evidence that the atomic IVC will evolve also into a molecular IVC in a few Myr.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Roehser T.Kerp J.Ben Bekhti N.Winkel B.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2018 Mar 13 09:19:30Z
  • Created: 2016 Aug 18 19:20:18Z

This resource was registered on: 2016 Aug 18 19:20:18Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • CO line emission
  • H I line emission
  • Interstellar medium
  • Milky Way Galaxy
  • Spectroscopy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/592/A142 Literature Reference: 2016A&A...592A.142R

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Radio

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/592/A142
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/592/A142/list (List of fits datacubes)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/592/A142/list?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us