Description
Compact hierarchical systems are important because the effects caused by the dynamical interaction among its members occur ona human timescale. These interactions play a role in the formation of close binaries through Kozai cycles with tides. One such system is xi Tauri: it has three hierarchical orbits: 7.14d (eclipsing components Aa, Ab), 145d (components Aa+Ab, B), and 51yr (components Aa+Ab+B, C). We aim to obtain physical properties of the system and to study the dynamical interaction between its components. Our analysis is based on a large series of spectroscopic photometric (including space-borne) observations and long-baseline optical and infrared spectro-interferometric observations. We used two approaches to infer the system properties: a set of observation-specific models, where all components have elliptical trajectories, and an N-body model, which computes the trajectory of each component by integrating Newton's equations of motion.
|