ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Faraday tomography of foreground towards IC342

Short name: J/A+A/597/A98
IVOA Identifier: ivo://CDS.VizieR/J/A+A/597/A98
DOI (Digital Object Identifier): 10.26093/cds/vizier.35970098
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/597/A98
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2017 Jan 10 11:18:57Z
Get XML

Description


Magnetic fields pervade the interstellar medium (ISM), but are difficult to detect and characterize. The new generation of low-frequency radio telescopes, such as the Low Frequency Array (LOFAR: a Square Kilometre Array-low pathfinder), provides advancements in our capability of probing Galactic magnetism through low-frequency polarimetry. Maps of diffuse polarized radio emission and the associated Faraday rotation can be used to infer properties of, and trace structure in, the magnetic fields in the ISM. However, to date very little of the sky has been probed at high angular and Faraday depth resolution. We observed a 5 by 5 degree region centred on the nearby galaxy IC 342 (l=138.2, b=+10.6) using the LOFAR High Band Antennas in the frequency range 115-178MHz. We imaged this region at 4.5x3.8arcmin^2^ resolution and performed Faraday tomography to detect foreground Galactic polarized synchrotron emission separated by Faraday depth (different amounts of Faraday rotation). Our Faraday depth cube shows rich polarized structure, with up to 30K of polarized emission at 150MHz. We clearly detect two polarized features that extend over most of the field but are clearly separated in Faraday depth. Simulations of the behaviour of the depolarization of Faraday-thick structures at such low frequencies show that such structures would be too strongly depolarized to explain the observations. These structures are therefore rejected as the source of the observed polarized features. Only Faraday thin structures will not be strongly depolarized at low frequencies; producing such structures requires localized variations in the ratio of synchrotron emissivity to Faraday depth per unit distance. Such variations can arise from several physical phenomena, such as a transition between regions of ionized and (mostly) neutral gas. We conclude that the observed polarized emission is Faraday thin, and propose that the emission originates from two mostly neutral clouds in the local ISM. Using maps of the local ISM to estimate distances to these clouds, we have modelled the Faraday rotation for this line of sight and estimated that the strength of the line of sight component of magnetic field of the local ISM for this direction varies between -0.86 and +0.12uG (where positive is towards the Earth). We propose that this may be a useful method for mapping magnetic fields within the local ISM in all directions towards nearby neutral clouds.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Van Eck C.L.Haverkorn M.Alves M.I.R.Beck R.de Bruyn A.G.Ensslin T.Farnes J.S.Ferriere K.Heald G.Horellou C.Horneffer A.Iacobelli M.Jelic V.Marti-Vidal I.Mulcahy D.D.Reich W.Rottgering H.J.A.Scaife A.M.MSchnitzeler D.H.F.M.Sobey C.Sridhar S.S.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2019 May 03 09:11:48Z
  • Created: 2017 Jan 10 11:18:57Z

This resource was registered on: 2017 Jan 10 11:18:57Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Interstellar medium
  • Magnetic fields
  • Polarimetry
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/597/A98 Literature Reference: 2017A&A...597A..98V

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/597/A98
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/597/A98/table (Table of RM cube properties)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/597/A98/table?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us