ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
OB-type spectroscopic binaries

Short name: J/A+A/598/A84
IVOA Identifier: ivo://CDS.VizieR/J/A+A/598/A84
DOI (Digital Object Identifier): 10.26093/cds/vizier.35980084
Publisher: CDS[+][Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/598/A84
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2017 Jul 20 09:04:32Z
Get XML

Description


Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results. Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q>0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z_{sun}_) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z~1 to 2 which are estimated to have Z~0.5 Z_{sun}_.

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

[+] Rights and Usage Information

This section describes the rights and usage information for this data.

Available Service Interfaces

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us