ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Iron-peak elements in solar neighbourhood

Short name: J/A+A/600/A22
IVOA Identifier: ivo://CDS.VizieR/J/A+A/600/A22
DOI (Digital Object Identifier): 10.26093/cds/vizier.36000022
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/600/A22
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2017 Mar 22 07:37:06Z
Get XML

Description


The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and alpha element (Mg) chemical abundances for 4666 stars. We used the bimodal distribution of [Mg/Fe] to chemically classify sample stars into different Galactic substructures: thin disc, metal-poor and high-alpha metal rich, high-alpha and low-alpha metal-poor populations. High-alpha and low-alpha metal-poor populations are fully distinct in Mg, Cu, and Zn. Thin disc trends of [Ni/Fe] and [Cu/Fe] are very similar and show a small increase at supersolar metallicities. Thin and thick disc trends of Ni and Cu are very similar and indistinguishable. Mn looks different from Ni and Cu. [Mn/Fe] trends of thin and thick discs actually have noticeable differences: the thin disc is slightly Mn richer than the thick disc. [Zn/Fe] trends look very similar to those of [alpha/Fe] trends. The dispersion of results in both discs is low (~0.05dex for [Mg, Mn, and Cu/Fe]) and is even much lower for [Ni/Fe] (~0.035dex). Zn is an alpha-like element and could be used to separate thin and thick disc stars. [Mn/Mg] ratio could also be a very good tool for tagging Galactic substructures. Some models can partially reproduce the observed Mg, Zn, and, Cu behaviours. Models mostly fail to reproduce Mn and Ni in all metallicity domains, however, models adopting yields normalised from solar chemical properties reproduce Mn and Ni better, suggesting that there is still a lack of realistic theoretical yields of some iron-peak elements. Very low scatter (~0.05dex) in thin and thick disc sequences could provide an observational constrain for Galactic evolutionary models that study the efficiency of stellar radial migration.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Mikolaitis S.de Laverny P.Recio-Blanco A.Hill V.Worley C.C.de Pascale M.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Apr 11 12:09:13Z
  • Created: 2017 Mar 22 07:37:06Z

This resource was registered on: 2017 Mar 22 07:37:06Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Chemical abundances
  • Spectroscopy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/600/A22 Literature Reference: 2017A&A...600A..22M

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/A+A/595/A18 : Lithium abundances in AMBRE stars (Guiglion+, 2016) ivo://CDS.VizieR/J/A+A/595/A18 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/600/A22
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/600/A22/table5 (Abundances of 4666 stars)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/600/A22/table5?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us