ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
APEX CO and HI observations of Lupus I

Short name: J/A+A/608/A102
IVOA Identifier: ivo://CDS.VizieR/J/A+A/608/A102
DOI (Digital Object Identifier): 10.26093/cds/vizier.36080102
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/608/A102
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2017 Dec 14 09:40:17Z
Get XML

Description


Lupus I cloud is found between the Upper Scorpius (USco) and Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco HI shell appears to interact with a bubble currently driven by the winds of the remaining B stars of UCL. Aims. We investigate whether the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. We performed APEX ^13^CO(2-1)and C^18^O(2-1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS HI survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. We present evidence that the molecular gas of Lupus Iis tightly linked to the atomic material of the USco shell. The CO emission in Lupus Iis found mainly at velocities between v_LSR_=3-6km/s, which is in the same range as the HI velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic HI shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The nonthermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario in which Lupus Iis located in the interaction zone between the USco shell and the UCL wind bubble. The kinematics observations are consistent with a scenario in which the Lupus Icloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counterpressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Gaczkowski B.Roccatagliata V.Flaischlen S.Kroell D.Krause M.G.H. Burkert A.Diehl R.Fierlinger K.Ngoumou J.Preibisch T.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Dec 20 08:47:04Z
  • Created: 2017 Dec 14 09:40:17Z

This resource was registered on: 2017 Dec 14 09:40:17Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • CO line emission
  • H II regions
  • Infrared astronomy
  • Infrared sources
  • Interstellar medium
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/608/A102 Literature Reference: 2017A&A...608A.102G

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Radio
  • Infrared

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/608/A102
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/608/A102/list (List of FITS datacubes)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/608/A102/list?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us