Catalog Service: Calibration of G passband for Gaia DR1
Description
On September 2016 the first data from Gaia were released (DR1). The first release included photometry for over 109 sources in the very broad G system. To test the correspondence between G magnitudes in DR1 and the synthetic equivalents derived using spectral energy distributions from observed and model spectrophotometry. To correct the G passband curve and to measure the zero point in the Vega system. Methods. I have computed the synthetic G and Tycho-2 BTVT photometry for a sample of stars using the Next Generation Spectral Library (NGSL) and the Hubble Space Telescope (HST) CALSPEC spectroscopic standards. I have found that the nominal G passband curve is too blue for the DR1 photometry, as shown by the presence of a color with an exponent of 0.783 eliminates the color term. The corrected passband has a Vega zero point of 0.070+/-0.004 magnitudes.
This section describes who is responsible for this resource
Publisher: CDSivo://CDS[Pub. ID]
Contact Information:
This section provides some status information: the resource version, availability, and relevant dates.
This resource was registered on: 2017 Dec 15 09:18:36ZThis resource description was last updated on: 2021 Oct 21 00:00:00Z
This section describes what the resource is, what it contains, and how it might be relevant.
Related Resources:
This section describes the data's coverage over the sky, frequency, and time.
Wavebands covered:
This section describes the rights and usage information for this data.
This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.
This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.
This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.
Cone search capability for table J/A+A/608/L8/table2 (Stars used for the correction)
VERB=1
VERB=3
Developed with the support of the National Science Foundation under Cooperative Agreement AST0122449 with the Johns Hopkins University The NAVO project is a member of the International Virtual Observatory Alliance
This NAVO Application is hosted by the Space Telescope Science Institute