ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
NGC1333-IRAS2A water snowline imaging

Short name: J/A+A/613/A29
IVOA Identifier: ivo://CDS.VizieR/J/A+A/613/A29
DOI (Digital Object Identifier): 10.26093/cds/vizier.36130029
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/613/A29
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2018 May 28 07:41:23Z
Get XML

Description


Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks due to its close proximity to the central star. Based on chemical considerations, HCO^+^ is predicted to be a good chemical tracer of the water snowline, because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopologue H^13^CO^+^ toward the envelope of the low-mass protostar NGC1333-IRAS2A, where the snowline is at larger distance from the star than in disks. Comparison with previous observations of H_2_^18^O will show whether H^13^CO^+^ is indeed a good tracer of the water snowline. NGC1333-IRAS2A was observed using NOEMA at ~0.9 arcsec resolution, targeting the H^13^CO^+^ J=3-2 transition at 260.255GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for H^13^CO^+^. This profile was validated with a full chemical model. The H^13^CO^+^ emission peaks ~2-arcsec northeast of the continuum peak, whereas H_2_^18^O shows compact emission on source. Quantitative modeling shows that a decrease in H13CO+ abundance by at least a factor of six is needed in the inner ~360AU to reproduce the observed emission profile. Chemical modeling predicts indeed a steep increase in HCO^+^ just outside the water snowline; the 50% decrease in gaseous H_2_O at the snowline is not enough to allow HCO^+^ to be abundant. This places the water snowline at 225AU, further away from the star than expected based on the 1D envelope temperature structure for NGC1333-IRAS2A. In contrast, DCO^+^ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. The spatial anticorrelation of the H^13^CO^+^ and H_2_^18^O emission provide a proof of concept that H^13^CO^+^ can be used as a tracer of the water snowline.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
van 't Hoff M.L.R.Persson M.V.Harsono D.Taquet V.Jorgensen J.K.Visser R.Bergin E.A.van Dishoeck E.F.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2018 May 28 08:54:57Z
  • Created: 2018 May 28 07:41:23Z

This resource was registered on: 2018 May 28 07:41:23Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Interstellar medium
  • Millimeter astronomy
  • Submillimeter astronomy
  • Young stellar objects
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/613/A29 Literature Reference: 2018A&A...613A..29V

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/A+A/606/A121 : NGC1333 IRAS 4A ALMA and PdBI maps (Lopez-Sepulcre+, 2017) ivo://CDS.VizieR/J/A+A/606/A121 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Radio

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/613/A29
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/613/A29/list (List fo fits datacubes)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/613/A29/list?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us