ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Water delivery in Pluto and Triton atmospheres

Short name: J/A+A/617/L5
IVOA Identifier: ivo://CDS.VizieR/J/A+A/617/L5
DOI (Digital Object Identifier): 10.26093/cds/vizier.36179005
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/617/L5
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2018 Sep 21 09:15:16Z
Get XML

Description


Both Pluto and Triton possess thin, N_2_-dominated atmospheres controlled by sublimation of surface ices. We aim to constrain the influx and ablation of interplanetary dust grains into the atmospheres of both Pluto and Triton in order to estimate the rate at which oxygen-bearing species are introduced into both atmospheres. We use (i) an interplanetary dust dynamics model to calculate the flux and velocity distributions of interplanetary dust grains relevant for both Pluto and Triton and (ii) a model for the ablation of interplanetary dust grains in the atmospheres of both Pluto and Triton. We sum the individual ablation profiles over the incoming mass and velocity distributions of interplanetary dust grains in order to determine the vertical structure and net deposition of water to both atmospheres. Our results show that <2% of silicate grains ablate at either Pluto or Triton while approximately 75% and >99% of water ice grains ablate at Pluto and Triton, respectively. From ice grains, we calculate net water influxes to Pluto and Triton of ~3.8kg/d (8.5x10^3^H_2_O/cm^2^/s) and ~370kg/d (6.2x10^5^H_2_O/cm^2^/s), respectively. The significant difference in total water deposition between Pluto and Triton is due to the presence of Triton within Neptune's gravity well, which both enhances interplanetary dust particle (IDP) fluxes due to gravitational focusing and accelerates grains before entry into Triton's atmosphere, thereby causing more efficient ablation. We conclude that water deposition from dust ablation plays only a minor role at Pluto due to its relatively low flux. At Triton, water deposition from IDPs is more significant and may play a role in the alteration of atmospheric and ionospheric chemistry. We also suggest that meteoric smoke and smaller, unablated grains may serve as condensation nuclei for the formation of hazes at both worlds.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Poppe A.R.Horanyi M.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2018 Sep 28 13:53:47Z
  • Created: 2018 Sep 21 09:15:16Z

This resource was registered on: 2018 Sep 21 09:15:16Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Solar system planets
  • Solar system
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/617/L5 Literature Reference: 2018A&A...617L...5P

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
J/ApJ/724/L84 : Changes in Titan's atmosphere from Cassini (Teanby+, 2010) ivo://CDS.VizieR/J/ApJ/724/L84 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/617/L5
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us