ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Breaks in surf. brightness prof. of galaxy disks

Short name: J/A+A/625/A36
IVOA Identifier: ivo://CDS.VizieR/J/A+A/625/A36
DOI (Digital Object Identifier): 10.26093/cds/vizier.36250036
Publisher: CDS[+][Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/625/A36
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2019 May 07 08:36:39Z
Get XML

Description


Using a sample of 175 low-inclination galaxies from the S^4^G, we investigate the origins of up-bending (Type III) breaks in the 3.6{mu}m surface brightness profiles of disk galaxies. We reanalyzed a sample of previously identified Type III disk break-hosting galaxies using a new, unbiased break-finding algorithm, which uncovered many new, sometimes subtle disk breaks across the whole sample. We classified each break by its likely origin through close examination of the galaxy images across wavelengths, and compare samples of galaxies separated by their outermost identified break types in terms of their stellar populations and local environments. We find that more than half of the confirmed Type III breaks in our sample can be attributed to morphological asymmetry in the host galaxies. As these breaks are mostly an artifact of the azimuthal averaging process, their status as physical breaks is questionable. Such galaxies occupy some of the highest density environments in our sample, implying that much of this asymmetry is the result of tidal disturbance. We also find that Type III breaks related to extended spiral arms or star formation often host down-bending (Type II) breaks at larger radius which were previously unidentified. Such galaxies reside in the lowest density environments in our sample, in line with previous studies that found a lack of Type II breaks in clusters. Galaxies occupying the highest density environments most often show Type III breaks associated with outer spheroidal components. We find that Type III breaks in the outer disks of galaxies arise most often through environmental influence: either tidal disturbance (resulting in disk asymmetry) or heating through, for example, galaxy harrassment (leading to spheroidal components). Galaxies hosting the latter break types also show bimodal distributions in central g-r color and morphological type, with more than half of such galaxies classified as Sa or earlier; this suggests these galaxies may be evolving into early-type galaxies. By contrast, we find that Type III breaks related to apparently secular features (e.g., spiral arms) may not truly define their hosts' outer disks, as often in such galaxies additional significant breaks can be found at larger radius. Given this variety in Type III break origins, we recommend in future break studies making a more detailed distinction between break subtypes when seeking out, for example, correlations between disk breaks and environment, to avoid mixing unlike physical phenomena.

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

[+] Rights and Usage Information

This section describes the rights and usage information for this data.

Available Service Interfaces

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us