ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Spectra of 25 carbon star envelopes

Short name: J/A+A/628/A62
IVOA Identifier: ivo://CDS.VizieR/J/A+A/628/A62
DOI (Digital Object Identifier): 10.26093/cds/vizier.36280062
Publisher: CDS[+][Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/628/A62
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2019 Aug 07 08:16:37Z
Get XML

Description


We aim to determine the abundances of CS, SiO, and SiS in a large sample of carbon star envelopes covering a wide range of mass loss rates to investigate the potential role that these molecules could play in the formation of dust in the surroundings of the central AGB star. We surveyed a sample of 25 carbon-rich AGB stars in the {lambda}2mm band, more concretely in the J=3-2 line of CS and SiO and in the J=7-6 and J=8-7 lines of SiS, using the IRAM 30m telescope. We performed excitation and radiative transfer calculations based on the LVG method to model the observed lines of the molecules and to derive their fractional abundances in the observed envelopes. We also assessed the effect of infrared pumping in the excitation of the molecules. We detected CS in all 25 targeted envelopes, SiO in 24 of them, and SiS in 17 sources. Remarkably, SiS is not detected in any envelope with a mass loss rate below 10^-6^M_{sun}_/yr while it is detected in all envelopes with mass loss rates above that threshold. We found that CS and SiS have similar abundances in carbon stars envelopes, while SiO is present with a lower abundance. We also found a strong correlation in which the denser the envelope, the less abundant CS and SiO are. The trend is however only tentatively seen for SiS in the high mass loss rate range. Furthermore, we found a relation in which the integrated flux of the MgS dust feature at 30um increases as the fractional abundance of CS decreases. The decline in the fractional abundance of CS with increasing density could be due to gas phase chemistry in the inner envelope or to adsorption onto dust grains. The latter possibility is favored by a correlation between the CS fractional abundance and the 30um feature, which suggests that CS is efficiently incorporated onto MgS dust around C-rich AGB stars. In the case of SiO, the observed abundance depletion with increasing density is most likely caused by an efficient incorporation onto dust grains. The latter possibility is favored by a correlation between the CS fractional abundance and the 30um feature, which suggests that CS is efficiently incorporated onto MgS dust around C-rich AGB stars. In the case of SiO, the observed abundance depletion with increasing density is most likely caused by an efficient incorporation onto dust grains. We conclude that CS and SiO (very likely) and SiS (tentatively) are good candidates to act as gas-phase precursors of dust in C-rich AGB envelopes.

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

[+] Rights and Usage Information

This section describes the rights and usage information for this data.

Available Service Interfaces

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us