ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Complexity of magnetic fields on red dwarfs

Short name: J/A+A/629/A83
IVOA Identifier: ivo://CDS.VizieR/J/A+A/629/A83
DOI (Digital Object Identifier): 10.26093/cds/vizier.36290083
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/629/A83
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2019 Sep 12 08:59:12Z
Get XML

Description


Generation, amplification, and evolution of magnetic fields in cool stars can be investigated by measuring the Zeeman effect in atomic and molecular lines observed in their spectra. In particular, Zeeman line broadening and polarization have been used for detecting magnetic fields in stellar atmospheres. Similar to the Sun, these fields are complex and height-dependent (i.e., comprise 3D structures) and require advanced diagnostics. Fortunately, many molecular lines dominating M-dwarf spectra, such as FeH, CaH, MgH, and TiO, are temperature- and Zeeman- sensitive and form at different atmospheric heights, which makes them excellent probes of magnetic fields on M dwarfs. Our goal is to analyze the complexity of magnetic fields in M dwarfs. We investigate how magnetic fields vary with the stellar temperature (i.e., mass) and how "surface" inhomogeneities are distributed in height - the dimension that is usually neglected in stellar magnetic studies. This is achieved by including many atomic and molecular species in our study. We have determined effective temperatures of the photosphere and of magnetic features, magnetic field strengths and filling factors for nine M dwarfs (M1-M7). Our chi^2^ analysis is based on a comparison of observed and synthetic intensity and circular polarization profiles (Stokes I and V) of many magnetically sensitive atomic and molecular lines in ten wavelength regions. Stokes profiles were calculated by solving polarized radiative transfer equations under the local thermodynamic equilibrium using model atmospheres. We have found that properties of magnetic structures depend on the analyzed atomic or molecular species and their formation heights within the atmosphere. Two types of magnetic features similar to those on the Sun have been found: one is cooler (starspots), while the other one is hotter (network, small-scale magnetic features). The magnetic field strength in both starspots and network is within 3kG to 6kG, on average it is 5kG for the M1-M7 spectral class range. These fields occupy a large fraction of M dwarf atmospheres at all heights, up to 100%. The plasma beta is less than one throughout the entire M dwarf atmospheres, implying that they are highly magnetized stars. A combination of many molecular and atomic species and a simultaneous analysis of intensity and circular polarization spectra have allowed us to better decipher the complexity of magnetic fields on M dwarfs, including their dependence on the height within the atmosphere. This work provides an opportunity to investigate a larger sample of M dwarfs as well as L-type brown dwarfs.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Afram N.Berdyugina S.V.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2019 Sep 24 07:49:50Z
  • Created: 2019 Sep 12 08:59:12Z

This resource was registered on: 2019 Sep 12 08:59:12Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Spectroscopy
  • Magnetic fields
  • Polarimetry
  • M stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/629/A83 Literature Reference: 2019A&A...629A..83A

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
https://www.cfht.hawaii.edu/Instruments/Spectroscopy/Espadons/CLASSICAL/ :

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/629/A83
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/629/A83/list (List of fits files)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/629/A83/list?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us