ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Lithium in red giant stars

Short name: J/A+A/633/A34
IVOA Identifier: ivo://CDS.VizieR/J/A+A/633/A34
DOI (Digital Object Identifier): 10.26093/cds/vizier.36330034
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/633/A34
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Jan 09 08:12:01Z
Get XML

Description


Lithium is extensively known to be a good tracer of non-standard mixing processes occurring in stellar interiors. We present the results of a new large Lithium survey in red giant stars and combine it with surveys from the literature to probe the impact of rotation-induced mixing and thermohaline double-diffusive instability along stellar evolution. We determined the surface Li abundance for a sample of 829 giant stars with accurate Gaia parallaxes for a large subsample (810 stars) complemented with accurate Hipparcos parallaxes (19 stars). The spectra of our sample of northern and southern giant stars were obtained in three ground-based observatories (Observatoire de Haute-Provence, ESO-La Silla, and the Mc Donald Observatory). We determined the atmospheric parameters (Teff, log(g) and [Fe/H]), and the Li abundance. We used Gaia parallaxes and photometry to determine the luminosity of our objects and we estimated the mass and evolution status of each sample star with a maximum-likelihood technique using stellar evolution models computed with the STAREVOL code. We compared the observed Li behaviour with predictions from stellar models, including rotation and thermohaline mixing. The same approach was used for stars from selected Li surveys from the literature. Rotation-induced mixing accounts nicely for the lithium behaviour in stars warmer than about 4200K, independently of the mass domain. For stars with masses lower than 2M_{sun}_ thermohaline mixing leads to further Li depletion below the Teff of the RGB bump (about 4000K), and on the early AGB, as observed. Depending on the definition we adopt, we find between 0.8 and 2.2% of Li-rich giants in our new sample. Gaia puts a new spin on the understanding of mixing processes in stars, and our study confirms the importance of rotation-induced processes and of thermohaline mixing. However asteroseismology is required to definitively pinpoint the actual evolution status of Li-rich giants.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Charbonnel C.Lagarde N.Jasniewicz G.North P.L.Shetrone M.Krugler Hollek J.Smith V.V.Smiljanic R.Palacios A.Ottoni G.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Sep 10 14:57:24Z
  • Created: 2020 Jan 09 08:12:01Z

This resource was registered on: 2020 Jan 09 08:12:01Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Chemical abundances
  • Giant stars
  • Late-type stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/633/A34 Literature Reference: 2020A&A...633A..34C

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
I/345 : Gaia DR2 (Gaia Collaboration, 2018) ivo://CDS.VizieR/I/345 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/633/A34
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/633/A34/table1 (Properties of giant field stars in our sample)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/633/A34/table1?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us