Description
We present the first three-dimensional internal motions for individual stars in the Draco dwarf spheroidal galaxy. By combining first epoch Hubble Space Telescope observations and second epoch Gaia Data Release 2 positions we measured the proper motions of 149 sources in the direction of Draco. We determined the line-of-sight velocities of a sub-sample of 81 red giant branch stars using medium resolution spectra acquired with the DEIMOS spectrograph at the Keck II telescope. Altogether this resulted in a final sample of 45 members of Draco with high-precision and accurate 3D motions, which we publish as a table in this paper. With this high-quality dataset we determined the velocity dispersions at a projected distance of ~120pc from the centre of Draco to be sigma_R_=11.0^+2.1^_-1.5_km/s, sigma_T_=9.9^+2.3^_-3.1_km/s and sigma_LOS_=9.0^+1.1^_-1.1_ km/s in the projected radial, tangential and line-of-sight directions. This results in a velocity anisotropy beta=0.25^+0.47^_-1.38_ at r>120pc. Tighter constraints can be obtained using the spherical Jeans equations and assuming constant anisotropy and NFW mass profiles, as well as that the 3D velocity dispersion should be lower than ~1/3 of the escape velocity of the system. In this case, we constrain the maximum circular velocity V_max_ of Draco to be in the range of 10.2-17.0km/s. The corresponding mass range is in good agreement with previous estimates based on line-of-sight velocities only. Our Jeans modelling supports the case for a cuspy dark matter profile in this galaxy. Firmer conclusions may be drawn by applying more sophisticated models on this dataset and with upcoming data releases.
|