ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Chemical abundance analysis of HD 20

Short name: J/A+A/635/A104
IVOA Identifier: ivo://CDS.VizieR/J/A+A/635/A104
DOI (Digital Object Identifier): 10.26093/cds/vizier.36350104
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/635/A104
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Mar 16 06:12:38Z
Get XML

Description


Metal-poor stars with available detailed information about their chemical inventory pose powerful empirical benchmarks for nuclear astrophysics. Here we present our spectroscopic chemical abundance investigation of the metal-poor ([Fe/H]=-1.60dex), r-process-enriched ([Eu/Fe]=0.73dex) halo star HD 20 using novel and archival high-resolution data at outstanding signal-to-noise ratios (up to 1000 per Angstroem). By combining one of the first asteroseismic gravity measurements in the metal-poor regime from a TESS light curve with the spectroscopic analysis of iron lines under non-local thermodynamic equilibrium conditions, we derive a set of highly accurate and precise stellar parameters. These allow us to delineate a reliable chemical pattern that is comprised of solid detections of 48 elements, including 28 neutron-capture elements. Hence, we establish HD 20 among the few benchmark stars that have almost complete patterns and possess low systematic dependencies on the stellar parameters. Our light-element (Z<30) abundances are representative of other, similarly metal-poor stars in the Galactic halo with contributions from core-collapse supernovae of type II. In the realm of the neutron-capture elements, our comparison to the scaled solar r-pattern shows that the lighter neutron-capture elements (Z<60) are poorly matched. In particular, we find imprints of the weak r-process acting at low metallicities. Nonetheless, by comparing our detailed abundances to the observed metal-poor star BD +17 3248, we find a persistent residual pattern involving mainly the elements Sr, Y, Zr, Ba, and La. These are indicative of enrichment contributions from the s-process and we show that mixing with material from predicted yields of massive, rotating AGB stars at low metallicity considerably improves the fit. Based on a solar ratio of heavy- to light-s elements -- at odds with model predictions for the i-process -- and a missing clear residual pattern with respect to other stars with claimed contributions from this process, we refute (strong) contributions from such astrophysical sites providing intermediate neutron densities. Finally, nuclear cosmochronology is used to tie our detection of the radioactive element Th to an age estimate for HD 20 of 11.0+/-3.8Gyr.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Hanke M.Hansen C.J.Ludwig H.-G.Cristallo S.McWilliam A.Grebel E. K.Piersanti L.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Mar 10 09:21:27Z
  • Created: 2020 Mar 16 06:12:38Z

This resource was registered on: 2020 Mar 16 06:12:38Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Chemical abundances
  • Atomic physics
  • Line intensities
  • Spectroscopy
  • Chemically peculiar stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/635/A104 Literature Reference: 2020A&A...635A.104H

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/635/A104
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us