Description
Several authors predicted an outburst of the Draconid meteor shower in 2018, but with an uncertain level of activity. Optical meteor observations were used to derive the population and mass indices, flux, and radiant positions of Draconid meteors. We performed 90 minutes of multi-station observations after the predicted peak of activity were performed using highly sensitive Electron Multiplying Charge Coupled Device (EMCCD) cameras. The data calibration is discussed in detail. A novel maximum likelihood estimation method of computing the population and mass index with robust error estimation was developed. We apply the method to observed Draconids and use the values to derive the flux. Meteor trajectories are computed and compared to predicted radiant positions from meteoroid ejection models. We find a mass index of 1.74+/-0.18 in the 30 min bin after the predicted peak, and 2.32+/-0.27 in the subsequent 60 min. The location and the dispersion of the radiant are a good match to modeled values, but there is an offset of 0.4{deg} in solar longitude.
|