ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
HCN-to-HNC intensity ratio

Short name: J/A+A/635/A4
IVOA Identifier: ivo://CDS.VizieR/J/A+A/635/A4
DOI (Digital Object Identifier): 10.26093/cds/vizier.36350004
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/635/A4
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Feb 28 08:16:21Z
Get XML

Description


The gas kinetic temperature (TK) determines the physical and chemical evolution of the interstellar medium (ISM). However, obtaining reliable TK estimates usually requires expensive observations including the combination of multi-line analysis and dedicated radiative transfer calculations. This work explores the use of HCN and HNC observations, and particularly the I(HCN)-to-I(HNC) intensity ratio (I(HCN)/I(HNC)) of their J=1-0 lines, as direct probe of the gas kinetic temperature in the molecular ISM. We obtained a new set of large-scale observations of the HCN and HNC (1-0) lines throughout the Integral Shape Filament (ISF) in Orion. In combination with ancillary gas and dust temperature measurements, we find a systematic temperature dependence of the observed I(HCN)-to-I(HNC) intensity ratio throughout our maps. Additional comparisons with chemical models demonstrate that these observed I(HCN)/I(HNC) variations are driven by the effective destruction and isomerization mechanisms of HNC under low-energy barriers. The observed variations of I(HCN)/I(HNC) with TK can be described with a two-part linear function. This empirical calibration is then used to create a temperature map of the entire ISF. Comparisons with similar dust temperature measurements in this cloud, as well as in other regions and galactic surveys, validate this simple technique for obtaining direct estimates of the gas kinetic temperature in a wide range of physical conditions and scales with an optimal working range between 15K<TK<=40K. Both observations and models demonstrate the strong sensitivity of the I(HCN)/I(HNC) ratio to the gas kinetic temperature. Since these lines are easily obtained in observations of local and extragalactic sources, our results highlight the potential use of this observable as new chemical thermometer for the ISM.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Hacar A.Bosman A.van Dishoeck E.F.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2020 Aug 20 07:17:07Z
  • Created: 2020 Feb 28 08:16:21Z

This resource was registered on: 2020 Feb 28 08:16:21Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Chemical abundances
  • Interstellar medium
  • Radio spectroscopy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/635/A4 Literature Reference: 2020A&A...635A...4H

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Millimeter

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/635/A4
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/635/A4/list (List of fits maps)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/635/A4/list?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Associated data
Available endpoints for this service interface:


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us