ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
1.4<=z<=5.0 QSOs luminosity function

Short name: J/A+A/636/A12
IVOA Identifier: ivo://CDS.VizieR/J/A+A/636/A12
DOI (Digital Object Identifier): 10.26093/cds/vizier.36360012
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/636/A12
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Apr 07 08:04:06Z
Get XML

Description


We present an estimate of the optical luminosity function (OLF) of LOFAR radio-selected quasars (RSQs) at 1.4<z<5.0 in the 9.3deg^2^ NOAO Deep Wide-field survey (NDWFS) of the Bootes field. The selection was based on optical and mid-infrared photometry used to train three different machine learning (ML) algorithms (Random forest, SVM, Bootstrap aggregation). Objects taken as quasars by the ML algorithms are required to be detected at >=5{sigma} significance in deep radio maps to be classified as candidate quasars. The optical imaging came from the Sloan Digital Sky Survey and the Pan-STARRS1 3{PI} survey; mid-infrared photometry was taken from the Spitzer Deep, Wide-Field Survey; and radio data was obtained from deep LOFAR imaging of the NDWFS-Bootes field. The requirement of a 5{sigma} LOFAR detection allowed us to reduce the stellar contamination in our sample by two orders of magnitude. The sample comprises 130 objects, including both photometrically selected candidate quasars (47) and spectroscopically confirmed quasars (83). The spectral energy distributions calculated using deep photometry available for the NDWFS-Bootes field confirm the validity of the photometrically selected quasars using the ML algorithms as robust candidate quasars. The depth of our LOFAR observations allowed us to detect the radio-emission of quasars that would be otherwise classified as radio-quiet. Around 65% of the quasars in the sample are fainter than M_1450_=-24.0, a regime where the OLF of quasars selected through their radio emission, has not been investigated in detail. It has been demonstrated that in cases where mid-infrared wedge-based AGN selection is not possible due to a lack of appropriate data, the selection of quasars using ML algorithms trained with optical and infrared photometry in combination with LOFAR data provides an excellent approach for obtaining samples of quasars. The OLF of RSQs can be described by pure luminosity evolution at z<2.4, and a combined luminosity and density evolution at z>2.4. The faint-end slope, {alpha}, becomes steeper with increasing redshift. This trend is consistent with previous studies of faint quasars (M_1450_<=-22.0). We demonstrate that RSQs show an evolution that is very similar to that exhibited by faint quasars. By comparing the spatial density of RSQs with that of the total (radio-detected plus radio-undetected) faint quasar population at similar redshifts, we find that RSQs may compose up to ~20% of the whole faint quasar population. This fraction, within uncertainties, is constant with redshift. Finally, we discuss how the compactness of the RSQs radio-morphologies and their steep spectral indices could provide valuable insights into how quasar and radio activity are triggered in these systems.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Retana-Montenegro E.Roettgering H.J.A.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2020 Jul 21 12:42:35Z
  • Created: 2020 Apr 07 08:04:06Z

This resource was registered on: 2020 Apr 07 08:04:06Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Quasars
  • Redshifted
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/636/A12 Literature Reference: 2020A&A...636A..12R

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/ApJS/161/9 : X-ray survey of the NDWFS Bootes field (Kenter+, 2005) ivo://CDS.VizieR/J/ApJS/161/9 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/636/A12
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/636/A12/photom (Photometric catalog)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/636/A12/photom?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/636/A12/spectros (Spectroscopic catalog)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/636/A12/spectros?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us