ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Limb-darkening coefficients for white dwarfs

Short name: J/A+A/641/A157
IVOA Identifier: ivo://CDS.VizieR/J/A+A/641/A157
DOI (Digital Object Identifier): 10.26093/cds/vizier.36410157
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/641/A157
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Sep 24 08:17:45Z
Get XML

Description


Systematic theoretical calculations of Doppler beaming factors are very scarce in the literature, mainly in the case of white dwarfs. Additionally, there are no specific calculations for the limb-darkening coefficients of 3D white dwarf models. The objective of this research is to provide the astronomical community with Doppler beaming calculations for a wide range of effective temperatures, local gravities and hydrogen/metal content for white dwarfs as well as stars on both the main sequence and the giant branch. In addition, for the first time we also present the theoretical calculations of the limb-darkening coefficients for 3D white dwarfs models. We computed Doppler beaming factors for DA, DB and DBA white dwarf models, as well as for main sequence and giant stars covering the transmission curves of the Sloan, UBVRI, HiPERCAM, Kepler, TESS, and Gaia photometric systems. The calculations of the limb-darkening coefficients for 3D models were carried out using the least-squares method for the same mentioned photometric systems. The input physics of the white dwarf models for which we have computed the Doppler beaming factors are: chemical compositions log[H/He]=-10.0 (DB), -2.0 (DBA) and He/H=0 (DA), with logg varying between 5.0 and 9.5 and effective temperatures in the range 3750-100000K. The beaming factors were also calculated assuming non-local thermodynamic equilibrium (NLTE) for the case of DA white dwarfs with T_eff_>40000K. For the mixing-length parameters we adopted ML2/{alpha}=0.8 (DA case) and 1.25 (DB and DBA). The Doppler beaming factors for main sequence and giant stars were computed using the ATLAS9 version, characterized by metallicities ranging from [-2.5, 0.2] solar abundances, with logg varying between 0 and 5.0 and effective temperatures between 3500-50000K. The adopted microturbulent velocity for these models was 2.0km/s. The limb-darkening coefficients were computed for 3D DA and DB white dwarf models calculated with the CO^5^BOLD radiation-hydrodynamics code. The parameter range covered by 3D DA models spans logg values between 7.0 and 9.0, Teff between 6000 and 15000K and He/H=0. The 3D DB models cover a similar parameter range of logg between 7.5 and 9.0, Teff between 12000 and 34000K and logH/He=-10.0. We adopted six laws for the computation of the limb-darkening coefficients: linear, quadratic, square root, logarithmic, power-2, and a general one with four coefficients. The beaming factor calculations which use realistic models of stellar atmospheres show that the black body approximation is not accurate, mainly for the filters u, u', U, g, g' and B. The black body approach is only valid for high effective temperatures and/or long effective wavelengths. Therefore, for more accurate analyses of light curves, we recommend the use of the beaming factors presented in this paper. Concerning limb-darkening, the distribution of specific intensities for 3D models indicates that in general these models are less bright towards the limb than their 1D counterparts, which implies steeper profiles. To describe these intensities better, we recommend the use of the four-terms law (also for 1D models) given the level of precision that is being achieved with Earth-based instruments, as well as space missions such as Kepler, TESS or PLATO in the future.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Claret A.Cukanovaite E.Burdge K.Tremblay P.-E.Parsons S.Marsh T.R.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Sep 08 13:16:51Z
  • Created: 2020 Sep 24 08:17:45Z

This resource was registered on: 2020 Sep 24 08:17:45Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Astronomical models
  • Stellar atmospheres
  • Photometry
  • Optical astronomy
  • Sloan photometry
  • Wide-band photometry
  • Infrared photometry
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/641/A157 Literature Reference: 2020A&A...641A.157C

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
J/A+AS/110/329 : LTE model atmospheres coeff. (Diaz-cordoves+, 1995) ivo://CDS.VizieR/J/A+AS/110/329 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical
  • Infrared

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/641/A157
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us