ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
DoAr 44 ugri light curves

Short name: J/A+A/643/A99
IVOA Identifier: ivo://CDS.VizieR/J/A+A/643/A99
DOI (Digital Object Identifier): 10.26093/cds/vizier.36430099
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/643/A99
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Nov 09 07:29:40Z
Get XML

Description


Young stars interact with their accretion disk through their strong magnetosphere. We aim to investigate the magnetospheric accretion/ejection process in the young stellar system DoAr 44 (V2062 Oph). We monitored the system over several rotational cycles, combining high-resolution spectropolarimetry at both optical and near-IR wavelengths with long-baseline near-IR inteferometry and multicolor photometry. We derive a rotational period of 2.96d from the system's light curve, which is dominated by stellar spots. We fully characterize the central star's properties from the high signal-to-noise, high-resolution optical spectra we obtained during the campaign. DoAr 44 is a young 1.2M_{sun}_ star, moderately accreting from its disk (Macc=6.510^-9^M_{sun}_/yr), and seen at a low inclination (i~=30{deg}). Several optical and near-IR line profiles probing the accretion funnel flows (H{alpha}, H{beta}, HeI 1083nm, Pa{beta}) and the accretion shock (HeI 587.6nm) are modulated at the stellar rotation period. The most variable line profile is HeI 1083nm, which exhibits modulated redshifted wings that are a signature of accretion funnel flows, as well as deep blueshifted absorptions indicative of transient outflows. The Zeeman-Doppler analysis suggests the star hosts a mainly dipolar magnetic field, inclined by about 20{deg} onto the spin axis, with an intensity reaching about 800G at the photosphere, and up to 2+/-0.8kG close to the accretion shock. The magnetic field appears strong enough to disrupt the inner disk close to the corotation radius, at a distance of about 4.6R* (0.043au), which is consistent with the 5R* (0.047au) upper limit we derived for the size of the magnetosphere in our Paper I from long baseline interferometry. DoAr 44 is a pre-transitional disk system, exhibiting a 25-30au gap in its circumstellar disk, with the inner and outer disks being misaligned. On a scale of 0.1au or less, our results indicate that the system is steadily accreting from its inner disk through its tilted dipolar magnetosphere. We conclude that in spite of a highly structured disk on the large scale, perhaps the signature of ongoing planetary formation, the magnetospheric accretion process proceeds unimpeded at the star-disk interaction level.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Bouvier J.Alecian E.Alencar S.Sousa A.Donati J.-F.Perraut K.Bayo A.Rebull L.M.Dougados C.Duvert G.Berger J.-P.Benisty M.Pouilly K.Folsom C.Moutou C.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 May 03 11:24:04Z
  • Created: 2020 Nov 09 07:29:40Z

This resource was registered on: 2020 Nov 09 07:29:40Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Photometry
  • Optical astronomy
  • Sloan photometry
  • Pre-main sequence stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/643/A99 Literature Reference: 2020A&A...643A..99B

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/643/A99
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us