Description
The infrared dark cloud (IRDC) SDC335.579-0.292 (hereafter, SDC335) is a massive (~5000 solar masses) star-forming cloud which has been found to be globally collapsing towards one of the most massive star forming cores in the Galaxy, which is located at its centre. SDC335 is known to host three high-mass protostellar objects at early stages of their evolution and archival ALMA Cycle 0 data (at ~5 arcsecond resolution) indicate the presence of at least one molecular outflow in the region detected in HNC. Observations of molecular outflows from massive protostellar objects allow us to estimate the accretion rates of the protostars as well as to assess the disruptive impact that stars have on their natal clouds during their formation. The aim of this work is to identify and analyse the properties of the protostellar-driven molecular outflows within SDC335 and use these outflows to help refine the properties of the young massive protostars in this cloud. We imaged the molecular outflows in SDC335 using new data from the Australia Telescope Compact Array (ATCA) of SiO and Class I CH_3_OH maser emission (at a resolution of ~3 arcsecond) alongside} observations of four CO transitions made with the Atacama Pathfinder EXperiment (APEX) and archival Atacama Large Millimeter/submillimeter Array (ALMA) CO, 13CO (~1 arcsecond), and HNC data. We introduced a generalised argument to constrain outflow inclination angles based on observed outflow properties. We then used the properties of each outflow to infer the accretion rates on the protostellar sources driving them. These accretion properties allowed us to deduce the evolutionary characteristics of the sources. Shock-tracing SiO emission and CH_3_OH Class I maser emission allowed us to locate regions of interaction between the outflows and material infalling to the central region via the filamentary arms of SDC335.
|