ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Orion B in 18 molecular tracers maps

Short name: J/A+A/645/A27
IVOA Identifier: ivo://CDS.VizieR/J/A+A/645/A27
DOI (Digital Object Identifier): 10.26093/cds/vizier.36450027
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/645/A27
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2020 Dec 23 10:51:40Z
Get XML

Description


Molecular hydrogen being unobservable in cold molecular clouds, the column density measurements of molecular gas currently rely either on dust emission observation in the far-IR or on star counting. (Sub-)millimeter observations of numerous trace molecules are effective from ground based telescopes, but the relationships between the emission of one molecular line and the H_2_ column density (NH_2_) is non-linear and sensitive to excitation conditions, optical depths, abundance variations due to the underlying physico-chemistry. We aim to use multi-molecule line emission to infer NH_2_ from radio observations. We propose a data-driven approach to determine NH_2_ from radio molecular line observations. We use supervised machine learning methods (Random Forests) on wide-field hyperspectral IRAM-30m observations of the Orion B molecular cloud to train a predictor of NH_2_, using a limited set of molecular lines as input, and the Herschel-based dust-derived NH_2_ as ground truth output. For conditions similar to the Orion B molecular cloud, we obtain predictions of NH_2_ within a typical factor of 1.2 from the Herschel-based estimates. An analysis of the contributions of the different lines to the predictions show that the most important lines are ^13^CO(1-0), ^12^CO(1-0), C^18^O(1-0), and HCO+(1-0). A detailed analysis distinguishing between diffuse, translucent, filamentary, and dense core conditions show that the importance of these four lines depends on the regime, and that it is recommended to add the N_2_H+(1-0) and CH_3_OH(2_0_-1_0_) lines for the prediction of NH_2_ in dense core conditions. This article opens a promising avenue to directly infer important physical parameters from the molecular line emission in the millimeter domain. The next step will be to try to infer several parameters simultaneously (e.g., NH_2_ and far-UV illumination field) to further test the method.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Gratier P.Pety J.Bron E.Roueff A.Orkisz J.H.Gerin M.de Souza Magalhaes V.Gaudel M.Vono M.Bardeau S.Chanussot J.Chainais P.Goicoechea J.R.Guzman V.V.Hughes A.Kainulainen J.Languignon D.Le Bourlot J.Le Petit F.Levrier F.Liszt H.Peretto N.Roue E.Sievers A.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Jun 17 12:54:27Z
  • Created: 2020 Dec 23 10:51:40Z

This resource was registered on: 2020 Dec 23 10:51:40Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Interstellar medium
  • Molecular clouds
  • Radio astronomy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/645/A27 Literature Reference: 2021A&A...645A..27G

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
https://www.iram.fr/~pety/ORION-B : ORION-B project Home Page

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Radio

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/645/A27
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/645/A27/list (List of fits files)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/645/A27/list?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us