ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Stellar parameters of the EXPRESS sample

Short name: J/A+A/647/A157
IVOA Identifier: ivo://CDS.VizieR/J/A+A/647/A157
DOI (Digital Object Identifier): 10.26093/cds/vizier.36470157
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/647/A157
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2021 Mar 26 12:22:04Z
Get XML

Description


As part of the search for planets around evolved stars, we can understand planet populations around significantly higher-mass stars than the Sun on the main sequence. This population is difficult to study any other way, particularly with radial-velocities since these stars are too hot and rotate too fast to measure precise velocities. Here we estimate stellar parameters for all of the giant stars from the EXPRESS project, which aims to detect planets orbiting evolved stars, and study their occurrence rate as a function of stellar mass. We analyse high resolution echelle spectra of these stars, and compute the atmospheric parameters by measuring the equivalent widths for a set of iron lines, using an updated method implemented during this work. Physical parameters are computed by interpolating through a grid of stellar evolutionary models, following a procedure that carefully takes into account the post-MS evolutionary phases. Probabilities of the star being in the red giant branch (RBG) or the horizontal branch (HB) are estimated from the derived distributions. Results: We find that, out of 166 evolved stars, 101 of them are most likely in the RGB phase, while 65 of them are in the HB phase. The mean derived mass is 1.41 and 1.87M_{sun}_ for RGB and HB stars, respectively. To validate our method, we compared our results with interferometry and asteroseismology studies. We find a difference in the radius with interferometry of 1.7%. With asteroseismology, we find 2.4% difference in logg, 1.5% in radius, 6.2% in mass, and 11.9% in age. Compared with previous spectroscopic studies, and find a 0.5% difference in Teff, 1% in logg, and 2% in [Fe/H]. We also find a mean mass difference with respect to the EXPRESS original catalogue of 16%. We show that the method presented here can greatly improve the estimates of the stellar parameters for giant stars compared to what was presented previously.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Soto M.G.Jones M.I.Jenkins J.S.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Sep 09 12:38:26Z
  • Created: 2021 Mar 26 12:22:04Z

This resource was registered on: 2021 Mar 26 12:22:04Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Optical observation
  • Catalogs
  • Giant stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/647/A157 Literature Reference: 2021A&A...647A.157S

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/A+A/615/A76 : Spectroscopic parameters of stars (SPECIES). I. (Soto+, 2018) ivo://CDS.VizieR/J/A+A/615/A76 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/647/A157
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/A+A/647/A157/tableb4 (Results for the EXPRESS sample)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/A+A/647/A157/tableb4?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us