ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
O(3P) + H2(v, j)-->OH + H:OH reactions

Short name: J/A+A/648/A76
IVOA Identifier: ivo://CDS.VizieR/J/A+A/648/A76
DOI (Digital Object Identifier): 10.26093/cds/vizier.36480076
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A76
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2021 Apr 15 07:24:00Z
Get XML

Description


The reaction between atomic oxygen and molecular hydrogen is an important one in astrochemistry as it regulates the abundance of the hydroxyl radical and serves to open the chemistry of oxygen in diverse astronomical environments. However, the existence of a high activation barrier in the reaction with ground state oxygen atoms limits its efficiency in cold gas. In this study we calculate the dependence of the reaction rate coefficient on the rotational and vibrational state of H_2_ and evaluate the impact on the abundance of OH in interstellar regions strongly irradiated by far-UV photons, where H_2_ can be efficiently pumped to excited vibrational states. We use a recently calculated potential energy surface and carry out time-independent quantum mechanical scattering calculations to compute rate coefficients for the reaction O(^3^P)+H_2_(v,j)-->OH+H, with H_2_ in vibrational states v=0-7 and rotational states j=0-10. We find that the reaction becomes significantly faster with increasing vibrational quantum number of H_2_, although even for high vibrational states of H_2_ (v=4-5) for which the reaction is barrierless, the rate coefficient does not strictly attain the collision limit and still maintains a positive dependence with temperature. We implemented the calculated state-specific rate coefficients in the Meudon PDR code to model the Orion Bar PDR and evaluate the impact on the abundance of the OH radical. We find the fractional abundance of OH is enhanced by up to one order of magnitude in regions of the cloud corresponding to AV=1.3-2.3, compared to the use of a thermal rate coefficient for O+H_2_, although the impact on the column density of OH is modest, of about 60%. The calculated rate coefficients will be useful to model and interpret JWST observations of OH in strongly UV-illuminated environments.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Veselinova A.Agundez M.Goicoechea J.R.Menendez M.Zanchet A.Verdasco E.Jambrina P.G.Aoiz F.J.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Jul 05 11:08:45Z
  • Created: 2021 Apr 15 07:24:00Z

This resource was registered on: 2021 Apr 15 07:24:00Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Atomic physics
  • Interstellar medium
  • Ultraviolet astronomy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A76 Literature Reference: 2021A&A...648A..76V

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • UV

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/648/A76
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us