ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Solar evolutionary and structure models

Short name: J/A+A/655/A51
IVOA Identifier: ivo://CDS.VizieR/J/A+A/655/A51Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/655/A51
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2021 Nov 17 08:23:37Z
Get XML

Description


In protoplanetary disks, the growth and inward drift of dust lead to the generation of a temporal "pebble wave" of increased metallicity. This phase must be followed by a phase in which the exhaustion of the pebbles in the disk and the formation of planets lead to the accretion of metal-poor gas. At the same time, disk winds may lead to the selective removal of hydrogen and helium from the disk. Hence, stars grow by accreting gas that has an evolving composition. In this work, we investigated how the formation of the Solar System may have affected the composition and structure of the Sun, and whether it plays any role in solving the so-called solar-abundance problem, that is, the fact that standard models with up-to-date lower-metallicity abundances reproduce helioseismic constraints significantly more poorly than those with old higher-metallicity abundances. We simulated the evolution of the Sun from the protostellar phase to the present age and attempted to reproduce spectroscopic and helioseismic constraints. We performed chi-squared tests to optimize our input parameters, which we extended by adding secondary parameters. These additional parameters accounted for the variations in the composition of the accreted material and an increase in the opacities. We confirmed that, for realistic models, planet formation occurs when the solar convective zone is still massive; thus, the overall changes due to planet formation are too small to significantly improve the chi-square fits. We found that solar models with up-to-date abundances require an opacity increase of 12% to 18% centered at T=10^6.4^K to reproduce the available observational constraints. This is slightly higher than, but is qualitatively in good agreement with, recent measurements of higher Fe opacities. These models result in better fits to the observations than those using old abundances; therefore, they are a promising solution to the solar abundance problem. Using these improved models, we found that planet formation processes leave a small imprint in the solar core, whose metallicity is enhanced by up to 5%. This result can be tested by accurately measuring the solar neutrino flux. In the improved models, the protosolar molecular cloud core is characterized by a primordial metallicity in the range Zproto=0.0127-0.0157 and a helium mass fraction in the range Yproto=0.268-0.274.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Kunitomo M.Guillot T.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Nov 17 07:25:05Z
  • Created: 2021 Nov 17 08:23:37Z

This resource was registered on: 2021 Nov 17 08:23:37Z
This resource description was last updated on: 2022 Feb 22 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Chemical abundances
  • Stellar evolutionary models
  • Astronomical models
  • Pre-main sequence stars
  • The Sun
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/655/A51 Literature Reference: 2021A&A...655A..51K

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/655/A51
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us