ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
The rotational spectrum of glycinamide

Short name: J/A+A/657/A99
IVOA Identifier: ivo://CDS.VizieR/J/A+A/657/A99
DOI (Digital Object Identifier): 10.26093/cds/vizier.36570099
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/657/A99
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2022 Jan 19 08:58:39Z
Get XML

Description


Glycinamide (NH_2_CH_2_C(O)NH_2_) is considered to be one of the possible precursors of the simplest amino acid glycine. Its only rotational spectrum reported so far has been in the cm-wave region on a laser-ablation generated supersonic expansion sample. The aim of this work is to extend the laboratory spectrum of glycinamide into the millimetre wave region to support its searches in the interstellar medium and to perform the first check for its presence in the high-mass star forming region Sagittarius B2(N). Glycinamide was synthesised chemically and was studied with broadband rotational spectroscopy in the 90-329 GHz region with the sample in slow flow at 50{deg}C. Tunneling across a low energy barrier between two symmetry equivalent configurations of the molecule resulted in splitting of each vibrational state and many perturbations in associated rotational energy levels, requiring careful coupled state fits for each vibrational doublet. We searched for emission of glycinamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimetre/submillimetre Array toward Sgr B2(N). The astronomical spectra were analysed under the assumption of local thermodynamic equilibrium. We report the first analysis of the mm-wave rotational spectrum of glycinamide, resulting in fitting to experimental measurement accuracy of over 1200 assigned and measured transition frequencies for the ground state tunneling doublet, of many lines for tunneling doublets for two singly excited vibrational states, and determination of precise vibrational separation in each doublet. We did not detect emission from glycinamide in the hot molecular core Sgr B2(N1S). We derived a column density upper limit of 1.5x10^16^cm^-2^, which implies that glycinamide is at least seven times less abundant than aminoacetonitrile and 1.8 times less abundant than urea in this source.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Kisiel Z.Kolesnikova L.Belloche A.Guillemin J.-C.Pszczolkowski L.Alonso E.R.Garrod R.T.Bialkowska-Jaworska E.Leon I.Mueller H.S.P.Menten K.M.Alonso J.L.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2022 Mar 21 09:35:44Z
  • Created: 2022 Jan 19 08:58:39Z

This resource was registered on: 2022 Jan 19 08:58:39Z
This resource description was last updated on: 2022 Mar 21 09:35:44Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Atomic physics
  • Interstellar medium
  • Spectroscopy
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/657/A99 Literature Reference: 2022A&A...657A..99K

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/A+A/657/A99
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us