Description
We present a theoretical investigation on periods and amplitudes of RR Lyrae pulsators by adopting stellar parameters which cover the range of theoretical evolutionary expectations. Extensive grids of nonlinear, nonlocal and time-dependent convective RR Lyrae envelope models have been computed to investigate the pulsational behavior in both fundamental and first overtone modes at selected luminosity levels and over an effective temperature range which covers the whole instability region. In order to avoid spurious evaluations of modal stability and pulsation amplitudes, the coupling between pulsation and convection was followed through a direct time integration of the leading equations until radial motions approached their limiting amplitude. Blue and red boundaries for pulsational instability into the HR diagram are presented for three different mass values M=0.75, 0.65 and 0.58M_{sun}_, together with an atlas of full amplitude theoretical light curves for both fundamental and first overtone pulsators and for two different assumptions of stellar masses: M=0.75 and 0.65M_{sun}_.
|