ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Red giant stellar parameters in the LMC bar

Short name: J/AJ/153/261
IVOA Identifier: ivo://CDS.VizieR/J/AJ/153/261
DOI (Digital Object Identifier): 10.26093/cds/vizier.51530261
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/153/261
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2019 Mar 08 14:18:23Z
Get XML

Description


We report new spectroscopic observations obtained with the Michigan/Magellan Fiber System of 308 red giants (RGs) located in two fields near the photometric center of the bar of the Large Magellanic Cloud. This sample consists of 131 stars observed in previous studies (in one field) and 177 newly observed stars (in the second field) selected specifically to more reliably establish the metallicity and age distributions of the bar. For each star, we measure its heliocentric line-of-sight velocity, surface gravity, and metallicity from its high-resolution spectrum (effective temperatures come from photometric colors). The spectroscopic Hertzsprung-Russell diagrams- modulo small offsets in surface gravities-reveal good agreement with model isochrones. The mean metallicity of the 177-RG sample is [Fe/H]=-0.76+/-0.02 with a metallicity dispersion {sigma}=0.28+/-0.03. The corresponding metallicity distribution-corrected for selection effects-is well fitted by two Gaussian components: one metal-rich with a mean -0.66+/-0.02 and a standard deviation 0.17+/-0.01, and the other metal-poor with -1.20+/-0.24 and 0.41+/-0.06. The metal-rich and metal-poor populations contain approximately 85% and 15% of stars, respectively. We also confirm that the velocity dispersion in the bar center decreases significantly from 31.2+/-4.3 to 18.7+/-1.9km/s with increasing metallicity over the range -2.09 to -0.38. Individual stellar masses are estimated using the spectroscopic surface gravities and the known luminosities. We find that lower mass, hence older, RGs have larger metallicity dispersion and lower mean metallicity than the higher-mass, younger RGs. The estimated masses, however, extend to implausibly low values (~0.1M_{sun}_), making it impossible to obtain an absolute age-metallicity or age distribution of the bar.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Song Y.-Y.Mateo M.Walker M.G.Roederer I.U.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2019 Mar 08 14:58:59Z
  • Created: 2019 Mar 08 14:18:23Z

This resource was registered on: 2019 Mar 08 14:18:23Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Chemical abundances
  • Metallicity
  • Magellanic Clouds
  • Optical astronomy
  • Photometry
  • Giant stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/153/261 Literature Reference: 2017AJ....153..261S

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/AJ/117/238 : LMC extended catalog (Bica+, 1999) ivo://CDS.VizieR/J/AJ/117/238 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/AJ/153/261
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/AJ/153/261/table2 (selected in the LMC bar)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/AJ/153/261/table2?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us