ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Kepler GK dwarf planet candidate samples

Short name: J/AJ/157/143
IVOA Identifier: ivo://CDS.VizieR/J/AJ/157/143
DOI (Digital Object Identifier): 10.26093/cds/vizier.51570143
Publisher: CDSivo://CDS[Pub. ID]
More Info: http://cdsarc.unistra.fr/cgi-bin/cat/J/AJ/157/143
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2019 Aug 02 09:24:12Z
Get XML

Description


We re-examine the statistical confirmation of small long-period Kepler planet candidates in light of recent improvements in our understanding of the occurrence of systematic false alarms in this regime. Using the final Data Release 25 (DR25, Twicken et al. 2016, J/AJ/152/158) Kepler planet candidate catalog statistics, we find that the previously confirmed single-planet system Kepler-452b no longer achieves a 99% confidence in the planetary hypothesis and is not considered statistically validated in agreement with the finding of Mullally et al. (2018AJ....155..210M). For multiple planet systems, we find that the planet prior enhancement for belonging to a multiple-planet system is suppressed relative to previous Kepler catalogs, and we also find that the multiple-planet system member, Kepler-186f, no longer achieves a 99% confidence level in the planetary hypothesis. Because of the numerous confounding factors in the data analysis process that leads to the detection and characterization of a signal, it is difficult to determine whether any one planetary candidate achieves a strict criterion for confirmation relative to systematic false alarms. For instance, when taking into account a simplified model of processing variations, the additional single-planet systems Kepler-443b, Kepler-441b, Kepler-1633b, Kepler-1178b, and Kepler-1653b have a non-negligible probability of falling below 99% confidence in the planetary hypothesis. The systematic false alarm hypothesis must be taken into account when employing statistical validation techniques in order to confirm planet candidates that approach the detection threshold of a survey. We encourage those performing transit searches of K2, TESS, and other similar data sets to quantify their systematic false alarm rates. Alternatively, independent photometric detection of the transit signal or radial velocity measurements can eliminate the false alarm hypothesis.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Burke C.J.Mullally F.Thompson S.E.Coughlin J.L.Rowe J.F.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2019 Nov 04 14:53:48Z
  • Created: 2019 Aug 02 09:24:12Z

This resource was registered on: 2019 Aug 02 09:24:12Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Exoplanets
  • Dwarf stars
  • G stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: http://cdsarc.unistra.fr/cgi-bin/cat/J/AJ/157/143 Literature Reference: 2019AJ....157..143B

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) ivo://CDS.VizieR/V/133 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.unistra.fr/viz-bin/votable?-source=J/AJ/157/143
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.u-strasbg.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/AJ/157/143/table1 (Kepler GK dwarf planet candidate samples)
Available endpoints for the standard interface:
  • http://vizier.unistra.fr/viz-bin/conesearch/J/AJ/157/143/table1?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us