Description
We present a massive accreting gap planet model that ensures large gaps in transitional disks are kept dust free by the scattering action of three coplanar quasi-circular planets in a 1:2:4 mean motion resonance (MMR). This model uses the constraint of the observed gap size, and the dust-free nature of the gap, to determine within ~10% the possible orbits for three massive planets in an MMR. Calculated orbits are consistent with the observed orbits and H{alpha} emission (the brightest line to observe these planets) for LkCa15b, PDS70b, and PDS70c within observational errors. Moreover, the model suggests that the scarcity of detected H{alpha} planets is likely a selection effect of the current limitations of non-coronagraphic, low (<10%) Strehl, H{alpha} imaging with adaptive optics (AO) systems used in past H{alpha} surveys. We predict that as higher Strehl AO systems (with high- performance custom coronagraphs; like the 6.5m Magellan Telescope MagAO-X system) are utilized at H{alpha}, the number of detected gap planets will substantially increase by more than tenfold. For example, we show that >25{+/-}5 new H{alpha} "gap planets" are potentially discoverable by a survey of the best 19 transitional disks with MagAO-X. Detections of these accreting protoplanets will significantly improve our understanding of planet formation, planet growth and accretion, solar system architectures, and planet-disk interactions.
|