ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
A sample of 7146 M or K-dwarfs from KIC and Gaia

Short name: J/AJ/161/203
IVOA Identifier: ivo://CDS.VizieR/J/AJ/161/203
DOI (Digital Object Identifier): 10.26093/cds/vizier.51610203
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/161/203
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2021 Aug 13 07:14:25Z
Get XML

Description


The planet-metallicity correlation serves as a potential link between exoplanet systems as we observe them today and the effects of bulk composition on the planet formation process. Many observers have noted a tendency for Jovian planets to form around stars with higher metallicities; however, there is no consensus on a trend for smaller planets. Here, we investigate the planet-metallicity correlation for rocky planets in single and multi-planet systems around Kepler M-dwarf and late-K-dwarf stars. Due to molecular blanketing and the dim nature of these low-mass stars, it is difficult to make direct elemental abundance measurements via spectroscopy. We instead use a combination of accurate and uniformly measured parallaxes and photometry to obtain relative metallicities and validate this method with a subsample of spectroscopically determined metallicities. We use the Kolmogorov-Smirnov (K-S) test, Mann-Whitney U-test, and Anderson-Darling (AD) test to compare the compact multiple planetary systems with single-transiting planet systems and systems with no detected transiting planets. We find that the compact multiple planetary systems are derived from a statistically more metal-poor population, with a p-value of 0.015 in the K-S test, a p-value of 0.005 in the Mann-Whitney U-test, and a value of 2.574 in the AD test statistic, which exceeds the derived threshold for significance by a factor of 25. We conclude that metallicity plays a significant role in determining the architecture of rocky planet systems. Compact multiples either form more readily, or are more likely to survive on gigayear timescales, around metal-poor stars.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Anderson S.G.Dittmann J.A.Ballard S.Bedell M.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2021 Sep 16 11:42:46Z
  • Created: 2021 Aug 13 07:14:25Z

This resource was registered on: 2021 Aug 13 07:14:25Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Astronomical object identification
  • Effective temperature
  • Exoplanets
  • Optical astronomy
  • Trigonometric parallax
  • Photometry
  • Infrared photometry
  • Wide-band photometry
  • Dwarf stars
  • K stars
  • Late-type stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/161/203 Literature Reference: 2021AJ....161..203A

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) ivo://CDS.VizieR/V/133 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical
  • Infrared

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/AJ/161/203
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/AJ/161/203/table2 (Full M and late-K-dwarfs data)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/AJ/161/203/table2?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us