Description
We report 272 radial velocities for 19 RR-Lyrae variables. For most of the stars we have radial velocities for the complete pulsation cycle. These data are used to determine robust center-of-mass radial velocities that have been compared to values from the literature in a search for evidence of binary systems. Center-of-mass velocities were determined for each star using Fourier Series and template fits to the radial velocities. Our center-of-mass velocities have uncertainties from {+/-}0.16km/s to {+/-}2.5km/s, with a mean uncertainty of {+/-}0.92km/s. We combined our center-of-mass velocities with values from the literature to look for deviations from the mean center-of-mass velocity of each star. Fifteen RR-Lyrae show no evidence of binary motion (BK And, CI And, Z CVn, DM Cyg, BK Dra, RR Gem, XX Hya, SZ Leo, BX Leo, TT Lyn, CN Lyr, TU Per, U Tri, RV UMa, and AV Vir). In most cases this conclusion is reached due to the sporadic sampling of the center-of-mass velocities over time. Three RR Lyrae show suspicious variation in the center-of-mass velocities that may indicate binary motion but do not prove it (SS Leo, ST Leo, and AO Peg). TU UMa was observed by us near a predicted periastron passage (at 0.14 in orbital phase) but the absence of additional center-of-mass velocities near periastron makes the binary detection, based on radial velocities alone, uncertain. Two stars in our sample show H{gamma} emission in phases 0.9-1.0: SS Leo and TU UMa.
|