Description
We analyze the association of galaxies with Ly{alpha} and OVI absorption, the most commonly detected transitions of the low-z intergalactic medium (IGM), in the fields of 14 quasars with z_em_=0.06-0.57. Confirming previous studies, we observe a high covering fraction for Ly{alpha} absorption to impact parameter {rho}=300h^-1^_72_kpc: 33/37 of our L>0.01L* galaxies show Ly{alpha} equivalent width W^Ly{alpha}^>=50 m{AA}. Galaxies of all luminosity L>0.01L* and spectral type are surrounded by a diffuse and ionized circumgalactic medium (CGM), whose baryonic mass is estimated at ~10^10.5^+/-0.3M_{sun}_ for a constant N_H_=10^19^cm^-2^. The virialized halos and extended CGM of present-day galaxies are responsible for most strong Ly{alpha} absorbers (W^Ly{alpha}^>300m{AA}) but cannot reproduce the majority of observed lines in the Ly{alpha} forest. We conclude that the majority of Ly{alpha} absorption with W^Ly{alpha}^=30-300m{AA} occurs in the cosmic web predicted by cosmological simulations and estimate a characteristic width for these filaments of ~400h^-1^_72_kpc. Regarding OVI, we observe a near unity covering fraction to {rho}=200h^-1^_72_kpc for L>0.1L* galaxies and to {rho}=300h^-1^_72_kpc for sub-L* (0.1 L*<L<L*) galaxies. Similar to our Ly{alpha} results, stronger OVI systems (W^1031^>70m{AA}) arise in the virialized halos of L>0.1L* galaxies. Unlike Ly{alpha}, the weaker OVI systems (W^1031^~30m{AA}) arise in the extended CGM of sub-L* galaxies. The majority of OVI gas observed in the low-z IGM is associated with a diffuse medium surrounding individual galaxies with L~0.3L* and rarely originates in the so-called warm-hot IGM (predicted by cosmological simulations.
|