Description
The conventional wisdom that the rate of incidence of MgII absorption systems, dN/dz (excluding "associated systems" having a velocity {beta}c relative to the active galactic nucleus (AGN) of less than ~5000km/s), is totally independent of the background AGNs has been challenged by a recent finding that dN/dz for strong MgII absorption systems toward distant blazars is 2.2+/-^0.8^_0.6_ times the value known for normal optically selected quasars (QSOs). This has led to the suggestion that a significant fraction of even the absorption systems with {beta} as high as ~0.1 may have been ejected by the relativistic jets in the blazars, which are expected to be pointed close to our direction. Here, we investigate this scenario using a large sample of 115 flat-spectrum radio-loud quasars (FSRQs) that also possess powerful jets, but are only weakly polarized. We show, for the first time, that dN/dz toward FSRQs is, on the whole, quite similar to that known for QSOs and that the comparative excess of strong MgII absorption systems seen toward blazars is mainly confined to {beta}<0.15. The excess relative to FSRQs probably results from a likely closer alignment of blazar jets with our direction; hence, any gas clouds accelerated by them are more likely to be on the line of sight to the active quasar nucleus.
|