ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
^13^CO cores in the Taurus molecular cloud

Short name: J/ApJ/760/147
IVOA Identifier: ivo://CDS.VizieR/J/ApJ/760/147
DOI (Digital Object Identifier): 10.26093/cds/vizier.17600147
Publisher: CDS[+][Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/760/147
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2014 Mar 31 11:40:03Z
Get XML

Description


Young stars form in molecular cores, which are dense condensations within molecular clouds. We have searched for molecular cores traced by ^13^CO J=1-->0 emission in the Taurus molecular cloud and studied their properties. Our data set has a spatial dynamic range (the ratio of linear map size to the pixel size) of about 1000 and spectrally resolved velocity information, which together allow a systematic examination of the distribution and dynamic state of ^13^CO cores in a large contiguous region. We use empirical fit to the CO and CO_2_ ice to correct for depletion of gas-phase CO. The ^13^CO core mass function (^13^CO CMF) can be fitted better with a log-normal function than with a power-law function. We also extract cores and calculate the ^13^CO CMF based on the integrated intensity of ^13^CO and the CMF from Two Micron All Sky Survey. We demonstrate that core blending exists, i.e., combined structures that are incoherent in velocity but continuous in column density. The core velocity dispersion (CVD), which is the variance of the core velocity difference {delta}v, exhibits a power-law behavior as a function of the apparent separation L: CVD(km/s){prop.to}L(pc)^0.7^. This is similar to Larson's law for the velocity dispersion of the gas. The peak velocities of ^13^CO cores do not deviate from the centroid velocities of the ambient ^12^CO gas by more than half of the line width. The low velocity dispersion among cores, the close similarity between CVD and Larson's law, and the small separation between core centroid velocities and the ambient gas all suggest that molecular cores condense out of the diffuse gas without additional energy from star formation or significant impact from converging flows.

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

[+] Rights and Usage Information

This section describes the rights and usage information for this data.

Available Service Interfaces

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us