Description
We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500{mu}m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey (HerMES) peaks at z=0.85, with 731 sources at z<2 and a tail of sources out to z~5. We measure more significant disagreement between photometric and spectroscopic redshifts (<{Delta}z/(1+z_spec_)>=0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24{mu}m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z<2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1mm. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z{Gt}0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.
|