Description
Spectral energy distributions are presented for 94 young stars surrounded by disks in the Serpens Molecular Cloud, based on photometry and Spitzer/IRS spectra. Most of the stars have spectroscopically determined spectral types. Taking a distance to the cloud of 415pc rather than 259pc, the distribution of ages is shifted to lower values, in the 1-3Myr range, with a tail up to 10Myr. The mass distribution spans 0.2-1.2M_{sun}_, with median mass of 0.7M_{sun}_. The distribution of fractional disk luminosities in Serpens resembles that of the young Taurus Molecular Cloud, with most disks consistent with optically thick, passively irradiated disks in a variety of disk geometries (L_disk_/L_star_~0.1). In contrast, the distributions for the older Upper Scorpius and {eta} Chamaeleontis clusters are dominated by optically thin lower luminosity disks (L_disk_/L_star_~0.02). This evolution in fractional disk luminosities is concurrent with that of disk fractions: with time disks become fainter and the disk fractions decrease. The actively accreting and non-accreting stars (based on H{alpha} data) in Serpens show very similar distributions in fractional disk luminosities, differing only in the brighter tail dominated by strongly accreting stars. In contrast with a sample of Herbig Ae/Be stars, the T Tauri stars in Serpens do not have a clear separation in fractional disk luminosities for different disk geometries: both flared and flat disks present wider, overlapping distributions. This result is consistent with previous suggestions of a faster evolution for disks around Herbig Ae/Be stars. Furthermore, the results for the mineralogy of the dust in the disk surface (grain sizes, temperatures and crystallinity fractions, as derived from Spitzer/IRS spectra) do not show any correlation to either stellar and disk characteristics or mean cluster age in the 1-10Myr range probed here. A possible explanation for the lack of correlation is that the processes affecting the dust within disks have short timescales, happening repeatedly, making it difficult to distinguish long-lasting evolutionary effects.
|