Description
We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H_2_O and CH_3_OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ~3.7x10^4^/cm3, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ~6" to the east of the cometary UCH II region, with an electron density ~1.3x10^5^/cm3, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ~2" to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30M_{sun}_. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5{mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.
|