Description
We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" {lambda}=1.3mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L_mm_), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3{sigma} depth of roughly 3mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L_mm_ and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L_mm_ and the disk mass, M_d_, we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3mm flux density of ~25mJy for 1M_{sun}_ hosts and a power-law scaling L_mm_{propto}M_{star}_^1.5-2.0^. We suggest that a reasonable treatment of dust temperature in the conversion from L_mm_ to M_d_ favors an inherently linear M_d_{prop.to}M_*_ scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is +/-0.7dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred M_d_ (or L_mm_) at any given host mass.
|