Description
We present a sample of 151 dwarf galaxies (10^8.5^<~M_*_<~10^9.5^M_{sun}_) that exhibit optical spectroscopic signatures of accreting massive black holes (BHs), increasing the number of known active galaxies in this stellar-mass range by more than an order of magnitude. Utilizing data from the Sloan Digital Sky Survey Data Release 8 and stellar masses from the NASA-Sloan Atlas, we have systematically searched for active BHs in ~25000 emission-line galaxies with stellar masses comparable to the Magellanic Clouds and redshifts z<0.055. Using the narrow-line [OIII]/H{beta} versus [NII]/H{alpha} diagnostic diagram, we find photoionization signatures of BH accretion in 136 galaxies, a small fraction of which also exhibit broad H{alpha} emission. For these broad-line active galactic nucleus (AGN) candidates, we estimate BH masses using standard virial techniques and find a range of 10^5^<~M_BH_<~10^6^M_{sun}_ and a median of M_BH_~2x10^5^M_{sun}_. We also detect broad H{alpha} in 15 galaxies that have narrow-line ratios consistent with star-forming galaxies. Follow-up observations are required to determine if these are true type 1 AGN or if the broad H{alpha} is from stellar processes. The median absolute magnitude of the host galaxies in our active sample is M_g_=-18.1mag, which is ~1-2mag fainter than previous samples of AGN hosts with low-mass BHs. This work constrains the smallest galaxies that can form a massive BH, with implications for BH feedback in low-mass galaxies and the origin of the first supermassive BH seeds.
|