ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Adiabatic mass loss in binary stars. II.

Short name: J/ApJ/812/40
IVOA Identifier: ivo://CDS.VizieR/J/ApJ/812/40
DOI (Digital Object Identifier): 10.26093/cds/vizier.18120040
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/812/40
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2016 Feb 23 08:02:30Z
Get XML

Description


In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M_{sun}_-100M_{sun}_ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q_ad_ (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}M_donor_/M_accretor_) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q_ad_ plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q_ad_ declining with decreasing mass, and asymptotically approaching q_ad_=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated q_ad_ values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q_ad_ as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Ge H.Webbink R.F.Chen X.Han Z.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Jan 23 22:00:00Z
  • Created: 2016 Feb 23 08:02:30Z

This resource was registered on: 2016 Feb 23 08:02:30Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Stellar evolutionary models
  • Astronomical models
  • Multiple stars
  • Stellar masses
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/812/40 Literature Reference: 2015ApJ...812...40G

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
J/A+A/507/929 : Light curves of SDSS J100658.40+233724.4 (Southworth+, 2009) ivo://CDS.VizieR/J/A+A/507/929 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/ApJ/812/40
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us